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1. Executive summary 

This research focused on upscaling of local measurements made by ecosystem 
infrastructure, like for example net ecosystem exchange (NEE), to larger scales like 
catchments and even continents. The work focused on two different approaches for doing 
the upscaling. One approach was a hybrid methodology, where ecosystem parameters first 
were estimated with help of measured time series of NEE using the Markov Chain Monte 
Carlo methodology of DREAM(ZS) (Laloy and Vrugt, 2012; Ter Braak and Vrugt, 2008). The 
advantage of this methodology is that it is not limited to non-Gaussian distributions and can 
also be applied for very non-linear simulation models. However, this methodology is very 
CPU-intensive and could only be applied for single sites. Selected were four sites with 
different plant function types (PFT). NEE-time series obtained by eddy covariance 
measurements at those sites were used for parameter estimation. Verification of parameter 
estimates made for a certain PFT with NEE-time series measured at other sites of the same 
PFT, showed that the characterization of NEE was considerably improved. In a next step, 
parameter estimates were applied to improve NEE simulations for the entire Rur catchment. 
Therefore, updated parameters were assigned to all grid cells under consideration of the 
parameter uncertainty.  

The second approach was variational data assimilation in combination with the land surface 
model ORCHIDEE. Variational data assimilation adjust model simulation results to measured 
data by minimizing an objective function that takes into account the uncertainty of initial 
values for the states and parameters to be adjusted, and differences between model 
simulations and measured values. The objective function was minimized with respect to 
model parameters (mainly ecosystem parameters) and initial conditions in this work. Values 
were estimated for single sites and also multiple sites, which shared the same PFT. These 
parameter estimates were used at other sites with the same PFT and it was evaluated to 
what degree simulation results improved. This approach is very similar to the upscaling 
approach from the plot to the catchment scale, but in this case the evaluation sites were 
sometimes located in other continents. It was found that this upscaling methodology 
improved the reproduction of exchange fluxes of carbon dioxide, water and energy between 
the land surface and atmosphere. The parameter estimates were also used for projections of 
changes in net terrestrial carbon storage as function of global temperature change. These 
projections were compared with simulations with default parameter values. It was found 
that whereas default parameter values resulted in an almost linear increase in terrestrial 
carbon storage as function of temperature increase up to 7K, the estimated parameter 
values resulted in a slower increase of terrestrial carbon storage as function of temperature 
and even a decrease for global temperature increases larger than 5K-6K. Therefore, 
projected changes in terrestrial carbon storage were sensitive to the adopted ecosystem 
parameters. 

Finally, it was investigated whether chlorophyll fluorescence (ChF) measurements and 
photochemical reflectance index (PRI) are promising data to further constrain simulation 
results with land surface models. At leaf level a high correlation was found between these 
variables and light use efficiency. However, for the eddy covariance tower footprint and 
MODIS the correlation between PRI and light use efficiency was much weaker. Surprisingly, 
for MODIS the PRI-LUE correlation was even slightly higher than for the flux tower.  
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2. UPSCALING METHODOLOGY 

2.1. UPSCALING FROM PLOT SCALE TO LANDSCAPE SCALE 

The upscaling of water and net ecosystem exchange fluxes from plot scale (level of eddy 
covariance tower footprint) to landscape scale was done following a hybrid approach. We 
argue that the main sources of uncertainty for this upscaling are ecosystem parameter 
uncertainty, uncertainty with respect to initial conditions (e.g, magnitude of carbon pools), 
forcing uncertainty and model structure uncertainty. The hybrid approach consists of 
estimating plant functional type (PFT)-specific ecosystem parameters and initial conditions 
at the plot scale, on the basis of NEE-fluxes measured by EC. Estimation was done with help 
of a Markov Chain Monte Carlo Method (MCMC), implemented in the software DREAM 
όά5ƛŦŦŜwŜƴǘƛŀƭ 9Ǿƻƭǳǘƛƻƴ !ŘŀǇǘƛǾŜ aŜǘǊƻǇƻƭƛǎέύ (Vrugt et al., 2009). An important advantage 
of this methodology is that the full posterior probability density function (pdf) is obtained, 
without linearization or restrictions like Gaussianity. Parameters were estimated based on 
single sites for four different PFTs. In a second step, the multivariate pdf´s of ecosystem 
parameters were assigned to the landscape scale, and model states are actualized using 
sequential data assimilation with updating of leaf area index from remote sensing 
information. Below we give a short summary of the methodology including some specifics 
relevant for the work later discussed in this deliverable. We refer to deliverable D10.2 and 
listed references for more details about the methodology. 

In contrast to local methods, global methods take into account correlations among 
parameters. Compared to other inverse methods, an important advantage is that estimated 
posterior pdf´s are not limited to Gaussianity and not affected by linearization. The latest 
version DREAM(zs) was particularly designed to solve high-dimensional search problems 
(Laloy and Vrugt, 2012; Ter Braak and Vrugt, 2008) more efficiently.  

In DREAM(zs) the Gelman-Rubin convergence diagnostic (Gelman and Rubin, 1992) is 
computed for each dimension j using at last 50% of samples in each chain (Ter Braak and 
Vrugt, 2008). If the Gelman-Rubin convergence diagnostic <1.2 for all j, the chains have 
converged in the same area of the parameter space.  

Two different likelihood functions can be tested with DREAM to constrain the model: 

(1) The log-density function with heteroscedastic measurement error: 

ÌÏÇὖὭȟρ
ὔ

ς
ÌzÏÇςz ὴὭ ÌÏÇὺ  

ρ

В
Ὁὶὶ
ὺ

  
Eq. 1 

with N being the number of measurement data for calibration (the length of measurement 
vector mn) and ὺ being the measurement error vector with length (n) corresponding to mn. 
(2) The sum of squared errors (SSE): 
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ὛὛὛὉ ά ώȟ  Eq. 2 

The model error (Err) was determined by: 

Ὁὶὶά ώ Ὥ Eq. 3 

with yn being model output according to vn and i is chain (sequence) number. In this work 
only the latter objective function (Eq. 2) was used. 

The Ensemble Kalman Filter (EnKF) (Burgers et al., 1998; Evensen, 2003, 1994) was applied 
using the Data Assimilation Research Testbed DART (Anderson et al., 2009). These runs 
considered uncertainty input from atmospheric forcings, initial states and ecosystem 
parameters (on the basis of DREAM) in a 80 member ensemble run.  

 

2.2. UPSCALING TO CONTINENTAL SCALE 

The method used to upscale ecosystem fluxes (carbon and water) at continental to global 
scale from an ensemble of in-situ and satellite observations has been described in details in 
the deliverable D10.2. We thus only briefly remind below the main components and 
different steps associated to the upscaling procedure: 

¶ Ecosystem Model:   

The principle of the approach is to use a global process-based terrestrial ecosystem 

model that is calibrated/optimized at an ensemble of sites representative of all 

ecosystems that will be considered at the continental/global scale. In our case we 

used the ORCHIDEE land surface model and calibrate the most uncertain model 

parameters controlling the carbon flow in the soil-plant-atmosphere continuum as 

well as the initial soil carbon pool sizes. The underlying assumption is that uncertain 

and poorly calibrated model parameters represent a significant share of the total 

model uncertainty.  

¶ Observations: 

An ensemble of observations are used to calibrate the model, from in-situ 

measurements representative of the plot scale (Eddy-ŎƻǾŀǊƛŀƴŎŜ ŦƭǳȄŜǎΣ ōƛƻƳŀǎǎΣΣΧύ 

to more integrated observations such as atmospheric CO2 concentrations, going 

though satellite observation of the vegetation activity. The assimilation of CO2 

concentrations implies the use of an atmospheric transport model to relate 

measured concentration to the surface fluxes.   

¶ Data assimilation procedure:  

The principle relies on the minimization of a cost function that quantifies the 

differences between modeled and observed quantities (given uncertainties linked to 
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both terms) and the differences between the parameters to be optimized and their 

prior knowledge. In our case, we further use the hypothesis of Gaussian errors and a 

least square cost function, which simplifies the derivation of the optimal parameters 

and their associated errors. Note finally that the optimization is done in a step-wise 

approach where all data stream are considered sequentially (see D10.2). 

¶ Upscale fluxes/stocks and associated uncertainties:  

The final upscaling step consist of running the optimized version of the ecosystem 

model at continental or global scale, using prescribed climate forcing (from re-

analysis or from model simulations for future projections). In this case, we applied 

ORCHIDEE globally over the past two decades and also using climate projection up to 

2100. We also propagated the estimated parameter errors on the simulated carbon 

fluxes and stocks 

 

3. RESULTS 

3.1. ROLLESBROICH/RUR 

The hybrid methodology as detailed in section 2.1 (further details in deliverable 10.2) was 
applied to upscale NEE-fluxes from the plot scale to the landscape or catchment scale. 

3.1.1. Site information  

The Rur catchment is located in the Belgian-Dutch-German border region. Different eddy 
covariance (EC) towers are located in the Rur-catchment (Erreur ! Source du renvoi 
introuvable.). The eddy covariance (EC) raw data provide plot scale estimates of the net 
ecosystem exchange of CO2 between the land surface and the atmosphere (NEE). Half hourly 
NEE data used for parameter estimation and model evaluation were available for several 
months (e.g. Kall-Sistig) up to >2.5 years (mainly from Mai 2011 to end of 2013).  

¢ƘŜ 9/ ǘƻǿŜǊ ǎƛǘŜǎ άwƻƭƭŜǎōǊƻƛŎƘέΣ άwǳǊ!ǳŜέ ŀƴŘ άYŀƭƭ-{ƛǎǘƛƎέ ŀǊŜ ƎǊŀǎǎƭŀƴd sites. 
ά²ǸǎǘŜōŀŎƘέ ƛǎ ŀ ŎƻƴƛŦŜǊ ŦƻǊŜǎǘ ǎƛǘŜ όǎǇǊǳŎŜǎ ƳŀƛƴƭȅύΦ άaŜǊȊŜƴƘŀǳǎŜƴέ ŀƴŘ ά{ŜƭƘŀǳǎŜƴέ ŀǊŜ 
crop sites where winter wheat is grown, in Selhausen in a rotation with sugar beets and 
potatoes. Kall-Sistig is not a long-term measurement site but a roving station was setup here 
for several month e.g. for uncertainty estimation (Post et al., 2015) and model evaluation 
purposes. The extensively managed grassland site Rollesbroich (RO) is located in the Eifel 
region (50.6219142 N / 6.3041256 E) in 515 meters above sea level. The coniferous forest 
site Wüstebach (WUE, 50.5049024 N/ 6.3313825 E) in 607 m MASL. The mountainous Eifel 
region is dominated by sedimentary rocks and shallow soils. Merzenhausen (ME) is located 
in an agriculturally used lowland region (93 m MASL; 50.9297879 N / 6.2969924 E) with 
fertile loamy soils. The annual precipitation in the lowland region is lower (~ 690 mm/a) and 
the annual mean temperature higher (~9.8°C) compared to the Eifel  (Rollesbroich: ~ 7.7°C ; 
~ 1033mm/a) (Post et al., 2014). 
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EC data from three sites (Rollesbroich, Merzenhausen and Wüstebach) were extensively 
used for parameter estimation with DREAM while EC data from other sites were only used 
for evaluation purposes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 The Rur catchment with the different land use and vegetation types. Indicated are 
also the positions of the eddy covariance towers. 

Because lower weights are assigned to observations with higher uncertainty during data 
assimilation, reliable NEE uncertainty estimates are essential for a successful data 
assimilation experiment. The uncertainty of the measured NEE was determined with a 
statistical approach described in Mauder et al., (2013) using the auto- and cross- covariances 
of the measured raw-data to determine the instrumental noise „  and the stochastic 
error  „ . Those two error terms were summed up to calculate the total uncertainty 
estimates for each half-hourly measurement value. These uncertainty estimates were also 
compared with uncertainty estimates based on an extended two-tower approach using the 
NEE data measured at RO as well as the second tower sites ME and KA showing good 
correspondence (Post et al., 2015). Measured raw-data were pre-processed with the TK3.1 
software (University of Bayreuth, Department of Micrometeorology, Germany; Mauder and 
Foken, 2011), which includes a comprehensive quality control and flagging system. Only data 
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with quality flag 0 (high quality data) and 1 (moderate quality data) were used for parameter 
estimation and data assimilation.  

The gaps were not filled to avoid introducing additional uncertainty. 

3.1.2. CLM4.5 set-up  

For NEE simulations and parameter estimation CLM was first setup in a ǎƛƴƎƭŜ Ǉƻƛƴǘ άt¢/[aέ 
mode for the sites Rollesbroich, Merzenhausen and Wüstebach. In addition, a regional CLM 
domain was setup for the entire Rur catchment with 1km2 grid resolution. The main 
difference of one PTCLM site and the corresponding 1km2 grid cell is that for single sites only 
a single plant functional type (PFT) is defined, while 1km2 grid cells usually contain different 
plant functional types represented as percentage coverage area in CLM. However, because 
the respective land use type is widespread around the single EC sites in the Rur catchment, 
the percentage of PFTs different from the site PFT was <15% for all sites except for Rur-Aue 
where only ~50% of the 1km2 grid cell is grassland, the other is broadleaf deciduous 
temperate tree (~20%) and c3-group (~30%). For both the regional and the point simulation 
we used reanalyzed regional meteorological input data (COSMO_DE) provided by the 
German meteorological service (Baldauf et al., 2009). The COSMO_DE data includes hourly 
time series of air temperature, incoming short wave radiation, incoming long wave radiation, 
precipitation, atmospheric pressure, specific humidity and wind speed. For RO gap-filled 
atmospheric site measurements were available and used instead of the COSMO_DE data for 
point simulations. However, a comparison between forward runs with site data and 
COSMO_DE showed only very minor differences in estimated NEE-fluxes so that the quality 
of COSMO_DE was considered acceptable for NEE simulations. The soil texture (percent clay 
and sand) data was obtained from the German soil map (BK50). Before running CLM4.5 in 
the CN mode, the initial state variables such as the carbon and nitrogen pools need to be 
spun up. First, a single instance spin-up was done by running CLM over a period of 1200 
years, driven by the COSMO_DE data for the years 2008-2010 in rotation. To generate the 80 
member ensemble of CLM initial states for the data assimilation, CLM was spun up a second 
time for 12 years using the initial state file obtained after the first 1200-year spin-up as 
input. For the second spin-up a 80 member perturbed forcing ensemble for the years 2008-
2010 was used. 

The 80 member ensemble of perturbed meteorological forcings was generated for the years 
2008-2012 using the COSMO_DE data. Fig. 3.1 shows the spread of the perturbed 
meteorological variables at the Rollesbroich site for the first two days in 2009. Perturbed 
forcings are important to take uncertainty in the meteorological input data into account and 
were used to generate perturbed initial conditions during the second spin up. According to 
(Kumar et al., 2012; Reichle et al., 2010) perturbation fields were only applied to the 
variables air temperature (K), long wave radiation (W/m2), short wave radiation (W/m2) and 
precipitation (mm/s). Spatial correlated noise was considered using the Fast Fourier 
Transform approach (Park and Xu, 2013) with a 10 km spatial correlation scale according to 
(Han et al., 2014).  



ExpeER - FP7 ς 262060  
D10.3- Upscaling methods for biogeochemical fluxes and ecological 
processes           

Page 7 of 27 

 

  

Fig. 3.1. Perturbed meteorological data: air temperature TBOT [K] (left) and precipitation 

PRECTmms [mm/s] for the 1st and 2nd of January 2009 

 

3.1.3. Forward runs  

Fig. 3.2 - Fig. 3.4 show NEE simulated for the sites Rollesbroich, Merzenhausen and 
Wüstebach for a forward CLM run (without calibrating parameters). A main discrepancy 
between NEE observations and CLM predictions for all sites is the underestimation of NEE 
magnitudes during most of the vegetation period. In addition, the time of the vegetation 
period (e.g. timing of vegetation period in March) sometimes shifted a few days. The 
simulated timing of the vegetation period and LAI development were improved by minor 
changes in the CLM4.5 stress deciduous phonology module and differed much more severe 
from the observations before those modifications (Erreur ! Source du renvoi introuvable.). 
After this modification, simulated NEE were relatively close to measurements for the entire 
period 2011-2012 (Fig. 3.4).  

In case of Merzenhausen, measured NEE decreases abruptly in the first half of July in both 
years 2011 and 2012 (Fig. 3.2) which does not agree with the simulated daily NEE 
magnitude. This abrupt decrease of measured NEE which is a result of the ongoing 
senescence of the canopy (winter wheat) is not represented by CLM. The effect of 
senescence is larger than the effect of grassland and crop management (fertilization, grass 
cutting/harvesting) for both sites which does not result in such high discrepancies. 
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Fig. 3.2 Half hourly NEE observations (black) versus CLM outputs for Merzenhausen 2012 

  

  

Fig. 3.3 Half hourly NEE observations (black) versus CLM outputs for Rollesbroich 2012 
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Fig. 3.4 Half hourly NEE observations (black) versus CLM outputs for Wüstenbach 2012 

 

 

Tab. 3.1: Parameters estimated with DREAM  

Short name Long Name Unit 

pft-parameters   

flnr Fraction of leaf N in Rubisco enzyme   - 

grperc Growth respiration factor - 

rootb_par  CLM rooting distribution parameter   1 m-1  

slatop Specific Leaf Area (SLA) at top of canopy m2/gC  

smpsc Soil water potential at full stomatal closure mm 

hard-wired parameters   

q10 temperature coefficient  - 

br base rate for maintenance respiration  - 

mb 
Ball-Berry slope of conductance-
photosynthesis relationship 

- 
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3.1.4 Parameter estimation with MCMC  

The eight parameters ( 

 

Tab. 3.1) estimated with DREAM(zs) were selected through a local sensitivity study (analysis 
of scatter plots) including 32 CLM parameters. The selection of those 32 parameters was 
based on previous studies on CLM parameter sensitivity studies (e.g. Göhler et al., 2013; 
Bonan et al., 2011; Wang et al., 2007). DREAM(zs) was then used to gain information about 
parameter uncertainty and to determine (marginal) probability distribution functions as well 
as maximum a posteriori (MAP) estimates for each of the 8 parameters. 

The selected ecosystem parameters were estimated with help of DREAM(zs) using NEE-time 
series for the year 2012. Other experiments were performed where only NEE-data from 
single seasons in 2012 were used to estimate the ecosystem parameter. A verification 
experiment was carried out for the year 2013. The estimates of ecosystem parameters were 
used as input for the simulations in 2013. The parameters which were estimated for single 
seasons of 2012 were evaluated for the same seasons in 2013. Results for Rollesbroich are 
displayed in Fig. 3.6 and illustrate that for the verification period the estimated ecosystem 
parameters outperform the simulations with the default parameter settings. This is 
especially the case for the parameter estimates based on NEE-time series for a season only. 
The improvement achieved with parameter estimates based on data for the complete year is 
smaller. This indicates that ecosystem parameters might be a function of time, or that 
season dependent parameters compensate other model structural errors. In case of the RO 
site, the estimated ecosystem parameters especially improved NEE for the spring season. For 
the needle leaf forest site Wüstebach estimation of ecosystem parameters improves the 
annual NEE-cycle in the verification year, and in this case both season-based parameter 
estimates and estimates based on data of a complete year give similar results. See also 
Figure 3.7. The improvements are especially noticeable in spring and summer. Also for the 
cropsite Merzenhausen (not shown) improvements were achieved, which were however 
smaller than for the other sites. Finally, for the broadleaf forest site Fointainebleau in France 
(not shown) the improvement was considerable, and larger than for the other sites.  
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Fig. 5.6: 5ŀƛƭȅ ŎƻǳǊǎŜ ƻŦ b99 ŦƻǊ ǿƛƴǘŜǊ ΨмнκΩмо όŀύΣ ǎǇǊƛƴƎ нлмо όōύΣ ǎǳƳƳŜǊ нлмо όŎύ ŀƴŘ 
autumn 2013 (d) for the Rollesbroich site. Individual lines indicate observed NEE (RO_obs), 
NEE simulated with CLM using default parameters and NEE simulated with estimated 
parameters for the one year period and for single seasons (_s). The 95% confidence 
intervals were determined by sampling from DREAM posterior distributions.  

 

Fig. 3.7: Like Figure 3.6, but for the Wüstebach site.  
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The estimated ecosystem parameters for four sites were first validated for another time 
period independent from the calibration period. In addition parameter estimates were 
validated based on other sites with the same similar plant functional types which were 
separated more than 500km from the sites parameter estimation was applied to. The 
evaluation sites were Grillenburg (Germany) for grassland, Hainich (Germany) for broadleaf 
forest, Tharandt (Germany) for needleleaf forest and Klingenberg (Germany) for cropland. In 
all cases, the estimated parameters resulted in model estimation results which were closer 
to the measured data than the simulations with default parameters. This was the case for 
the average daily NEE-cycle, the yearly NEE-cycle, the total NEE sum over the year and 
statistical performance measures like root mean square error (RMSE) and absolute mean 
error (AME) evaluated over all time points. Fig. 3.8 shows as an example the evaluation for 
the daily NEE-course for the site Hainich. 

Fig. 3.8: 5ŀƛƭȅ ŎƻǳǊǎŜ ƻŦ b99 ŦƻǊ ǿƛƴǘŜǊ ΨлсκΩлт όŀύΣ ǎǇǊƛƴƎ нллт όōύΣ ǎǳƳƳŜǊ нллт όŎύ ŀƴŘ 
autumn 2007 (d) for the FLUXNET site DE-Hai. The lines shown are observed NEE with the 
EC method (DE-Hai_obs.), NEE simulated with CLM validation runs using default 
parameters, NEE simulated with estimated parameters from the Fontainebleau site in 
France (same PFT: C3-crop) for the one year period (_1y) and for the single seasons (_s). 
The 95% confidence intervals were determined by sampling from DREAM posterior 
distributions. 

 

3.2. Upscaling carbon fluxes at continental scale using ORCHIDEE model 

3.2.1. Optimization of ORCHIDEE with multiple data streams  

We present the results of a sequential optimization of the main parameters of ORCHIDEE 
using three data streams: MODIS-NDVI data, in situ carbon and water flux measurements 
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(from FluxNet network) and atmospheric CO2 concentrations. Figure 3.9 summarizes the 
approach and illustrates the typical model data fit for each data stream:  

¶ In the first step, we used MODIS-NDVI to correct the phenology parameters of the 

deciduous Plant Functional Types in ORCHIDEE (4 or 5 parameters for each PFT). The 

main result is a shortening of the growing season length for most PFT compared to 

the prior model simulation (see MacBean et al., 2015).  

¶ In a second step, we further correct a larger ensemble of parameters (around 15 per 

PFT) using more than 70 FluxNet sites with several years of NEE and LE flux 

measurements (assimilation of daily mean values). The improvement of the mean 

seasonal cycle (see figure 3.9) for each PFT is significant both in terms of amplitude 

and phase of the mean seasonal cycle. The results are discussed in detail in Kuppel et 

al. 2014.  

 

Figure 3.9: Overall scheme of the step-wise optimization of the ORCHIDEE parameters 
using MODIS-NDVI (step 1), FluxNet carbon and water measurements at more than 70 
sites (step 2) and atmospheric observations at 72 stations (step 3). For each step the 
typical model ς data fit is illustrated (see text). The estimated parameters (Xi) and their 
covariance error matrix (Bi) fǊƻƳ ŜŀŎƘ ǎǘŜǇ άƛέ ŀǊŜ ŦǳǊǘƘŜǊ ǳǎŜŘ ŀǎ ǇǊƛƻǊ for the next 
step. After step3 the final parameters X3 and B3 ǿƛƭƭ ōŜ ǳǎŜŘ ŦƻǊ ǘƘŜ Ǝƭƻōŀƭ άǳǇǎŎŀƭŜ 
ǎƛƳǳƭŀǘƛƻƴέΦ   
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¶ Finally the atmospheric CO2 observations at 70 sites are used to fine tune all 

parameters previously considered, including additional ones to optimize the initial 

soil carbon pools per region (around 30 regions globally). The global CO2 trend that 

was too strong in the prior simulation is successfully corrected in order to match the 

observed trend (see Mauna Loa station in figure 3.9) by fitting the global land 

ecosystem carbon uptake.  

One crucial point is that at each step we use the posterior parameter values and error 
variance-covariance matrix derived from the previous step. The method and results will be 
described in Peylin et al. (in preparation). 

 

3.2.2. Spatial upscaling of carbon fluxes and stocks and associated 

uncertainties   

Following the optimization of the land surface model parameters described above, we then 
run the model globally to estimate the space-time distribution of carbon fluxes and stocks.  

Upscaled carbon fluxes: 

Figure 3.10 illustrates the spatial distribution of the land ecosystem net annual carbon fluxes 
for a particular year after the optimization as well as the flux changes due to the 
optimization (posterior minus prior). The yearly mean optimized fluxes show significant 
uptakes for most ecosystems except central east Europe, south of the Amazon basin, middle 
US and India. The corrections through the optimization scheme (parameter optimization) 
were mostly to reduce the prior ORCHIDEE carbon sink at mid to high latitudes and to 
increase the sink over the Tropics.  

 

  

Figure 3.10: Left: estimated global net ecosystem carbon flux for a particular year, 2002 (in 
kgC/m2/yr). Right: difference between the estimated (posterior) net carbon fluxes and the 
prior fluxes (before optimization).  

If we now consider the aggregated fluxes for the Northern, Tropical and Southern land (see 
figure 3.11) we clearly see large year-to-year flux variations that are not in phase between 
the different latitude bands. The tropical fluxes present large anomalies during marked El-
nino events, with lower carbon uptake (see for instance the 1998 fluxes) while the Northern 






















