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a b s t r a c t

Ammonia (NH3) empirical critical levels for Europe were re-evaluated in 2009, based mainly on the
ecological responses of lichen communities without acknowledging the physiological differences be-
tween oligotrophic and nitrophytic species. Here, we compare a nitrogen sensitive lichen (Evernia pru-
nastri) with a nitrogen tolerant one (Xanthoria parietina), focussing on their physiological response (Fv/
Fm) to short-term NH3 exposure and their frequency of occurrence along an NH3 field gradient. Both
frequency and Fv/Fm of E. prunastri decreased abruptly above 3 mg m�3 NH3 suggesting direct adverse
effects of NH3 on its photosynthetic performance. By contrast, X. parietina increased its frequency with
NH3, despite showing decreased capacity of photosystem II above 50 mg m�3 NH3, suggesting that the
ecological success of X. parietina at ammonia-rich sites might be related to indirect effects of increased
nitrogen (NH3) availability. These results highlight the need to establish NH3 critical levels based on
oligotrophic lichen species.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Reactive nitrogen (Nr) in the atmosphere, in the form of par-
ticulates such as PM10’s, can threaten human health, while
increased Nr deposition threatens the existence of many semi-
natural ecosystems as we know them (Galloway and Cowling,
2002; Dentener et al., 2006). Ammonia gas (NH3), emitted pre-
dominantly from agricultural sources, is themain source of reduced
Nr and European legislation exists to protect vulnerable ecosys-
tems, for example by establishing empirical critical loads and levels
(CLE) for NH3.

Ammonia CLE correspond to the NH3 concentration above
which direct adverse effects, i.e. changes in community composi-
tion with biodiversity reduction, may occur according to present
knowledge on specified sensitive elements of the environment
(Cape et al., 2009). Recently, NH3 CLEs were revised (Cape et al.,
2009; Fenn et al., 2008), mainly based on changes in commu-
nities and functional groups of lichens, one of the most sensitive
components of the ecosystem to Nr excess (Jovan et al., 2012).
Presently the CLE for NH3 for lichens and bryophytes is 1 mg m�3
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NH3 where they form a key component of ecosystem integrity
(Cape et al., 2009). Pinho et al. (2009, 2012) confirmed the suit-
ability of lichen functional groups for determining the NH3 CLE,
identifying CLE below 1.9 mg m�3 for European Mediterranean
evergreen woodlands. Thresholds were established from changes
in functional groups of both oligotrophic and nitrophytic lichen
species. Oligotrophic lichens are sensitive to Nr and tend to
disappear in ammonia-rich environments, while nitrophytes are
tolerant and tend to increase in cover and frequency with ammonia
exposure (Pinho et al., 2011). Changes in lichen communities can be
due to direct adverse or beneficial effects of the pollutant on the
lichen species or to an indirect effect on interspecific relationships
(e.g. competition) between them. Although many authors have
investigated the complexity of parameters interplaying under field
conditions (Jovan et al., 2012; Spier et al., 2010) and the tolerance of
lichens to eutrophication (Hauck, 2010), the competitive relation-
ship between species under nitrogen excess and the physiological
mechanisms underpinning sensitivity and tolerance are still poorly
understood.

A lower extracellular cation exchange capacity in the nitrogen
tolerant Xanthoria parietina (L.) Th. Fr. than in the nitrogen sensitive
lichen Evernia prunastri (L.) Ach. was proposed as one of the specific
characteristics responsible for the different nitrogen sensitivities in
the two species (Gaio-Oliveira et al., 2001). Moreover, detoxification
ce amongst lichen functional groups be explained by physiological
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mechanisms can work, as known for vascular plants, converting
toxic intracellular ammonium in non-toxic forms of nitrogen, like
amino acids. Allocation of nitrogen to the photobiont and an in-
crease in chlorophyll concentration with a consequent increase in
photosynthetic capacity, needed to provide carbon skeletons for
amino acids formation, have been observed in tolerant species
(Hauck, 2010 and references therein).

Based on these observations we hypothesized that the ecolog-
ical success of nitrophytic species under increased availability of Nr
as NH3 is linked to improved physiological performance of the
photobiont, while the disappearing of oligotrophic ones is due to a
reduced performance of the algal partner.

To test this hypothesis, we compared the physiological perfor-
mance, expressed as the maximum photochemical efficiency of the
photosystem II (Fv/Fm), under short-term, up to 10 weeks, NH3
exposure of the sensitive E. prunastri and the tolerant X. parietina
(Nimis and Martellos, 2008), two of the most common species in
Mediterranean areas, with their frequency in the field in response
to long-term NH3 exposure.

The interpretation of lichen response can influence environ-
mental policies and management as lichens are commonly used as
ecological indicators. Currently, nitrophytic and oligotrophic spe-
cies equally contribute to the establishment of CLE. Our results
show that NH3 directly affects oligotrophs, indicating a prime in-
dicator role for this functional group and, when not available,
nitrophytes, only indirectly affected, should be used instead.

2. Material and methods

In cork-oak woodland in south-west Europe (Portugal), annual NH3 concen-
trations were determined using passive ALPHA samplers (Tang et al., 2001) exposed
at increasing distance from a cattle barn housing c. 200 cows. These samplers trap
the ammonia onto filters soaked in citric acid and are replaced at monthly intervals.
Concentrations were then interpolated for the study area using ordinary kriging
after variogram analysis (CERENA, 2000). In the same area the frequency of epiphytic
lichens was scored on 55 trees using the standard “European method” (Asta et al.,
2002). After selecting for trees fulfilling the sampling criteria (of the same spe-
cies-Quercus suber L., without visible signs of disease, absence of a secondary
branches at the sampling height and small deviation from the vertical), a sampling
grid with five 10 � 10 cm was placed on the trunk four main aspects (North, East,
South and West) of the trees. The sum on all aspects of the number of grid-squares
each species was found on was noted as the species frequency. This value can vary
from a minimum of 0 to a maximum of 20 (when the species is found on all the
squares on the four aspects). For further details on this study see Pinho et al. (2011,
2012). The frequency of E. prunastri and X. parietina was then related to the NH3

concentrations using box plots.
The same species were then collected at sites with low nitrogen availability,

with an NH3 concentration respectively of 1.6 mg m�3 for X. parietina (Penicuik,
Fig. 1. Frequency of X. parietina (a) and E. prunastri (b) along a gradie
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Midlothian Scotland) and 0.6 mg m�3 for E. prunastri (Peebles, Tweeddale, Scot-
land). Branches of Elderberry, Sambucus nigra, and of English Oak, Quercus robur,
carrying respectively X. parietina and E. prunastri were transplanted along an NH3

gradient at an experimental ammonia release site at Whim (UK), with low ambient
total N deposition (8 kg N ha�1 yr�1) (see Leith et al., 2004). All the transplanted
branches supported by plastic sticks were inserted facing the NH3 source at the
same height in the open. NH3 concentrations were measured at the transplant
locations, located 12, 30 and 60 m from the NH3 source, using passive ALPHA
samplers 0.1 m above the vegetation (Tang et al., 2001). Transplants were collected
after 1, 5 and 10 weeks and the average NH3 concentration during each exposure
period was calculated. Measurements of the Fv/Fm ratio of the transplanted lichens
were taken as a stress indicator (Pisani et al., 2009; Strasser et al., 2000). Lichen
samples were gently moistened in blotting paper and then dark-adapted for 15 min
before fluorescence measurements were taken. The Fv/Fm ratio was measured at
room temperature, with the Plant Efficiency Analyzer Handy PEA (Hansatech In-
struments LTD, UK). The average Fv/Fm data for each concentration was then
related to average NH3 concentration using non-parametric rank-order (Spearman)
correlations.

3. Results and discussion

The frequency of E. prunastri occurrence along an NH3 gradient
in the field (Fig.1a) suggests an NH3 threshold for E. prunastri below
3 mg m�3 since there were hardly any occurrences above this con-
centration. By contrast the frequency of X. parietina increased at
NH3 concentrations greater than 9.1 mg m�3 (Fig. 1b).

The Fv/Fm values of the two species exposed to NH3 (Fig. 2)
showed that photosystem II in E. prunastri was highly sensitive to
ammonia concentrations. The fall in Fv/Fm indicates the concen-
tration dependent deleterious effect of ammonia on carbon
assimilation in this lichen, confirming its known sensitivity to
ammonia (Pirintsos et al., 2009; Munzi et al., 2012). Although not
identical, physiological response and field observations suggest an
NH3 threshold for E. prunastri of the same order of magnitude and
consistent with the NH3 CLE. It’s reasonable that long term expo-
sure induces a lower threshold as already shown in case of cumu-
lative treatments (Sheppard et al., 2011).

These findings suggest that CLE for sensitive lichen species like
E. prunastri can represent thresholds beyond which the carbon
assimilation is so seriously compromised that it prevents the spe-
cies survival and leads to its disappearance. In other words, excess
of NH3 exerts a direct toxic effect on E. prunastri.

Xanthoria parietina is a nitrophytic species, with a limited dis-
tribution in the presence of low Nr availability, but becoming
dominant with high Nr availability (van Herk, 1999). In fact, under
increasing Nr availability firstly sensitive species decrease, while
tolerant ones can be either promoted or remain indifferent. Based
nt of NH3 concentrations near a cattle barn in Portugal (n ¼ 55).

nce amongst lichen functional groups be explained by physiological
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Fig. 2. Fv/Fm values (�SD) of X. parietina (circles) and E. prunastri (triangles) at
different NH3 concentrations. The r is the non-parametric correlation coefficient and
the fitted line is the linearly adjusted trend (for illustrative purposes only).
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on this, we could have expected a null or even slightly positive
effect of NH3 availability on carbon assimilation, enabling it to grow
and spread. Our findings showed the opposite, with Fv/Fm
decreasing with increasing NH3 concentration (Fig. 2). This is
consistent with Munzi et al. (2010) who showed that high doses
and repeated nitrogen supply can be detrimental even for tolerant
species like X. parietina.

Thus, while our hypothesis is confirmed for E. prunastri, where a
reduced photosynthetic performance could be associated with its
absence from Nr-rich environments, this is not true for X. parietina,
whose ecological success in the same environments cannot be
explained by an improved photosynthetic performance. However,
even if not favoured by or completely indifferent to Nr effects, the
ability to cope with high Nr concentrations allows X. parietina and
other nitrophytic species to occupy a wide range of ecological
conditions where they can live without competition from sensitive
communities. In this case, NH3 exerts an indirect positive effect on
X. parietina.

Honegger et al. (1996), for example, suggested that X. parietina
has a remarkable regenerative capacity that could provide a sig-
nificant ecological benefit. Nutrient applications can increase
growth rates and competitive ability in X. parietina under certain
conditions (Welch et al., 2006), enabling colonization of some
substrates in transplant experiments (Armstrong, 1993). Finally,
Munzi et al. (2013) suggested that X. parietina can develop pro-
tective mechanisms, initiating rapid repair when growing in the
presence of high N availability. The relatively short exposure
duration we used in the transplant experiment however, may have
been insufficient to assess this possibility.

This work shows how combining physiological responses of
two dominant species and ecological impacts of increased
availability of NH3 in lichens helps us understand why different
species are more or less sensitive and how they can be used to
indicate NH3 enrichment. In particular, oligotrophic species give
more accurate indications than nitrophytic species for the
establishment of NH3 CLE since they are affected directly by
increasing availability of this nitrogen form. On the other hand,
nitrophytic species can provide an indirect way to determine NH3
CLE when other pollutants contribute to the disappearance of
sensitive species.
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